Long Division of Polynomials

Polynomial Long Division is a lot like dividing integers (you should all be experts at this! ⁽ⁱ⁾)

32)3587

Now let's try it with polynomials instead of ordinary numbers:

Ex.1)

$$x-2\overline{)x^3+3x^2-4x-12}$$

Ex.2) Divide $2x^4 + 3x^3 + 5x - 1$ by $x^2 - 2x + 2$ (careful setting this one up!)

Synthetic Division of Polynomials

Synthetic division can be used to divide a polynomial by an expression of the form x-k.

Let's do Example 1 again, but this time with synthetic division

$$x-2\overline{)x^3+3x^2-4x-12}$$

In synthetic division, you don't write the variables.

Step 1:	Write the coefficients of the polynomial and then write the k-value (2) of the divisor $x-2$ on the left. Write the 1 st coefficient 1 below the line.	2	1 ↓ 1	3	-4	-12		
Step 2:	Multiply the k-value (2) by the number below the line and write the product below the next coefficient.	2	1	3 2	-4	-12		
Step 3:	Write the <u>sum</u> of 3 and 2 below the line. Multiply 2 by the number below the line and write the product below the next coefficient.	2	1	3 2 5	-4 10	-12	-	
Step 4:	Write the sum of -4 and 10 below the line. Multiply 2 by the number below the line and write the product below the next coefficient.	2	1	3 2 5	-4 10 6	-12 12 0		remainder

The remainder is 0, and the resulting numbers 1, 5, and 6 are the coefficients of the quotient

So your answer is $\dots x^2 + 5x + 6$

Just like with long division!

Let's try some more:

Ex 3) $(5x^4 - 2x^3 + 7x^2 + 6x - 8) \div (x - 4)$

Ex 4) Divide $x^3 - 10x - 24$ by x + 2 (be careful...)

Ex 5) $(2x^3 - 3x + 4) \div (x - 1)$

The Remainder Theorem

An important case of the division algorithm occurs when the divisor is of the form d(x) = x - k.

Division Algorithm:

Ex 6) Let $f(x) = 3x^3 - 2x^2 + 2x - 5$

Divide f(x) by x-2 using synthetic division. What is the remainder? How is f(2) related to the remainder?

The Remainder Theorem:

If a polynomial f(x) is divided by x-k, then the remainder is r=f(k).

Ex 7) Find the <u>remainder</u> when $f(x)=3x^2+7x-20$ is divided by:

From the previous page:

Since the remainder in part (b) is 0, x+4 **divides evenly** into $f(x)=3x^2+7x-20$.

And therefore, we know:

- x+4 is a FACTOR of $f(x)=3x^2+7x-20$,
- -4 is a ZERO of $3x^2 + 7x 20 = 0$, and
- (-4,0) is an X-INTERCEPT of the graph of $y = 3x^2 + 7x 20$.

We know all of this without ever dividing, factoring, or graphing.

The Factor Theorem:

A polynomial f(x) has a factor x-k if f(k)=0.

Ex 8) Factor $f(x) = 2x^3 + 11x^2 + 18x + 9$ given that f(-3) = 0.

Because f(-3)=0, we know that ______ is a factor of f(x). Use synthetic division to simplify the polynomial and find the other factors.

Ex 9) One zero of $f(x) = x^3 - 2x^2 - 9x + 18$ is x = 2. Find the other zeros of the function.

Because f(2)=0, you know that _____ is a factor of f(x). Again, use synthetic division to factor completely.

Ex 10) Use $f(x) = x^3 - 4x^2 - 2x + 8$ to answer the following questions:

- a) Use the zero feature on your calculator to approximate the zeros of the function.
 My zeros are approximately _____, ___, and _____
- b) Sketch:

c) Determine one of the exact zeros.

One of the exact zeros is _____

d) Use synthetic division to verify your result, and then factor the polynomial completely.

Homework: Page 159-160 #7, 9, 15, 21, 23, 27, 29, 35, 45(a&b), 49, 51, 65